
UPDATING CRO TO CRO2

Durga Suresh (d.suresh@neu.edu)1, Mieczyslaw Kokar (m.kokar@neu.edu)1, Jakub Moskal
(jmoskal@vistology.com)2, and Yanji Chen (chen.yanj@husky.neu.edu)1

1Northeastern University, Boston MA USA
2VIStology, Framingham, MA USA

ABSTRACT

An ontology defines the basic concepts in a domain and the re-
lationships among them. It is typically used to share informa-
tion among intelligent agents and facilitates the analysis of do-
main knowledge. In the cognitive radio (CR) domain, two radios
can achieve interoperability by exchanging the knowledge about
their communication protocols and various parameters. Cogni-
tive Radio Ontology(CRO) was developed at the Wireless Inno-
vation Forum to model CR domain and was expressed in a for-
mal declarative language - the Web Ontology Language (OWL).

In this paper we are presenting our work on modifying the
CRO. The result of this workwill be CRO2. Themajormodifica-
tions that we are working on are in the top level structure, prop-
erties and the relationships between the classes and objects. An
ontology can be evaluated from a number of different perspec-
tives, including (1) modularity, (2) extensibility, (3) precision in
defining classes and support for automatic inference capability,
(4) compactness, (5) the coverage of knowledge for the domain,
and others. This paper presents examples of how the first four
of these features are being addressed in the context of the de-
velopment of CRO2. CRO2 will be submitted to the Wireless
Innovation Forum for standardization. The main goal of pre-
senting this paper at this conference is to seek feedback before
its final submission.

1. INTRODUCTION

Cognitive radio (CR) [1] is used to describe a radio commu-
nication paradigm which takes advantage of the Software De-
fined Radio (SDR) architecture and allows for dynamic change
of a radio’s operational behavior which includes interoperability,
performance optimization, opportunistic use of resources and
others. An ontology provides a shared vocabulary, which can
be used to model the knowledge about a specific domain. An
ontology captures the types of objects (classes) that exist in a
specific domain and the relations among the various types of
objects. Coginitve Radio Ontology (CRO) was developed by
the Modeling Language for Mobility (MLM) work group of the
Wireless Innovation Forum [2] with the intent of establishing a
common language that would allow cognitive radios to interop-
erate. The CRO includes [2]: (1) a core part that covers the ba-
sic terms of wireless communication from the physical layer and

the MAC layer, (2) concepts that are needed to express the uses
cases developed by the MLMWorking Group [3], (3) partial ex-
pressions of the FM3TR waveform, and (4) partial expressions
of the Transceiver Facility APIs.

The top level of the CRO is patterned onDescriptive Ontology
for Linguistics and Cognitive Engineering (DOLCE) [4]. Fig-
ure 1 shows the top-level classes of the CRO. DOLCE is based
on the fundamental distinction between Endurant, Perdurant and
Quality. Endurant refers to the entity that is wholly presented at
any given snapshot of time. Examples include objects (material
or abstract) for example; a table, a tree, a channel or a network.
In the CRO the endurants are represented by the class Object.
Perdurant is the entity that can be presented only partly at any
snapshot of time. A process can have temporal parts and spatial
parts [5]. In the CRO perdurants are represented by the class
Process. A part of an object is also an object. Similarly, a part
of a process is also a process itself.

Figure 1: Top-level classes of the CRO

The following statements apply to the CRO (see Figure 1):

1. An object cannot be a part of a process, but rather partici-
pate in a process.

2. The inputs and outputs of a process are objects.

3. The capabilities of a component are collections of pro-
cesses.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

84



Figure 2: Nuvio Foundational Ontology

4. The characteristics of an entity, including objects and pro-
cesses, can be represented as objects.

5. The qualities with units are associated with a type of Quan-
tity. Quantity plays a similar role to that of Quality in
DOLCE. Quantities can be sub-classified into different
types.

6. Each quantity is associated with a UnitOfMeasure and
Value.

Cognitive Radio Ontology was developed to capture the basic
terms of wireless communications. The main ideas of a cogni-
tive radio ontology originated from the Ontology-Based Radio
(OBR) concept [6,7]. The OBR approach is based on the model-
driven architecture implemented by means of ontologies, Java’s
reflection, representations of facts in Web Ontology Language
(OWL) [8] and automatic inference provided by an inference en-
gine associated with OWL. Additionally, the architecture of the
OBR approach includes query support, e.g., in SPARQL [9].
Queries can be used to gather information about the structure
and content of radio components, their characteristics and mes-
sages exchange. A query engine can reply to queries by ana-
lyzing the internal structure of a radio component using Java’s
reflection and infering facts using the systems inference capabil-
ities. The big advantage of ontology based radios is the radio’s
self-awareness - a feature that is needed for cognition, as postu-
lated by Mitola in [10].

Figure 3: CRO in the realm of Cognitive Radio

Figure 3 shows the CRO in the realm of the cognitive radio.
The figure shows how the CRO interfaces with the radio using
the SDR API. The ontology is a part of the cognitive radio soft-
ware which consists of the CRO, cognitive radio polices and the
inference engine.

This paper discusses the updates being made to the CRO. Sec-
tion 2. presents the original CRO and the applications of the
CRO. Section 3. presents the updates being made to the CRO,

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

85



including the modifications made to the structure, properties, at-
tributes, class and object relationships, as well as the rationale
for the changes. The modified ontology will be named CRO2.
Section 4. show examples of inference and consistency based on
the DySpan’s SCMML mappings to the CRO and CRO2. Sec-
tion 5. summarizes the paper, states the conclusions made and
future work on the CRO2.

2. USES OF CRO

CRO has been submitted by the Wireless Innovation Forum to
the IEEE for standardization. It is being considered now by the
IEEE 1900.5 Working Group. The work of this group has re-
sulted in the publication of the requirements for an ontology-
based policy language [11]. Currently, this Working Group is
preparing a standard (IEEE 1900.5.1) for a policy language that
partially satisfies the requirements specified in [11]. Addition-
ally, this group is working on another related standard (IEEE
1900.5.2) [12], which will capture the specification of Spectrum
Consumption Models [13]. SCM’s include transmitter models,
receiver models, and a combination of transmitter and receiver
models to form a system model (collection of transmitter and
receiver models) as well as collections that are comprised of
groups of system models.

The conventions for combining the data structures of the con-
structs and combining the constructs to form models are de-
scribed by the eXtensible Markup Language (XML) schema
for spectrum consumption modeling, known as Spectrum Con-
sumption Modeling Markup Language (SCMML). SCMML
is used for communicating system models and collections.
SCMML is a hierarchy of data types that build upon each other
[14]. SCMML schema for communicating system models and
collections written in XML is mapped to Web Ontology Lan-
guage (OWL) using the CRO2.

Northeastern and VIStology are using parts of the CRO in
the DARPA-sponsored project in which capabilities of RF de-
vices are captured in an ontology and then used by the WALDO
system (being developed by DARPA) for matching device capa-
bilities with applications’ needs. Moreover, VIStology is using
some parts of the CRO in the development of a SpectrumKnowl-
edge Framework, a project supported the Applied Physics Lab-
oratory of the Johns Hopkins University (this project is being
sponsored by the Office of Naval Research).

Another example of a successful application of the CRO was
demonstrated by Lechowicz in [15], where a novel method for
ontology-based waveform reconfigurability was described. The
approach presented in [15] allows radios of different hardware
or software architectures, using different software APIs and even
non-uniform waveform description schemas, to interoperate. In
this method cognitive radios share the same base software de-
fined radio ontology (the CRO, extended with some concepts
necessary to describe state machines), which allows the radios to
understand the concepts in a uniform way, thus enabling transfer
of more complex concepts between the nodes. In the process of

reconfiguration, nodes can receive specifications of waveforms
expressed inWebOntology Language (OWL) and rules and then
automatically configure their processing according to the speci-
fication.

CRO has been used in a combined approach of ontology and
policy-based control for collaborative adaptation of cognitive
radio parameters to improve the link performance as shown in
[16]. This book presents many details behind the CRO and its
development. A use case of collaborative link adaptation was se-
lected to demonstrate the approach. To implement this use case,
a collection of policies (expressed in the CRO) were developed
and then executed by the inference engines of two radios collab-
orating and adapting their link.

3. MOVING TO CRO2

While the CRO is quite well accepted by the community and has
many uses, there are still areas where improvements to the CRO
are possible. While analyzing the CRO, we have identified the
following issues that should be addressed: (1) improve the mod-
ularity, (2) provide more support for inference, (3) provide more
specific concept descriptions, and (4) improve the extensibility
of the ontology. Obviously, the scope of the ontology could be
expanded to provide a more complete coverage of the domain,
but the changes made in CRO2 so far do not address this; in-
stead they improve the way the same knowledge as in the CRO
is expressed.

Before going into the discussion of the above four issues, we
first briefly mention one aspect of our ontology development ef-
fort that has impact on all of those aspects - the development
of a top-level ontology. The authors in [17] [18] [19] describe
a upper-level ontology, or a foundational ontology, as a means
to provide reliable and reusable definitions to abstract concepts.
Foundational ontologies have been developed to establish a set
of concepts and definitions which could be shared by lower-level
domain ontologies [17]. Foundational ontologies have been
used to give a real-world interpretation to the primitives of mod-
eling languages such as UML [20]. Foundational ontologies in-
clude highly general information modeling concepts that can be
reused in the design of application ontologies for all sorts of do-
mains [21].

As described earlier in this paper, the top level of the CROwas
patterned upon the DOLCE ontology [4]. The CRO2 is based
on Nuvio (Northeastern and VIStology) ontology, a new foun-
dational ontology developed by our team. The Nuvio ontology
was inspired by the original CRO, QUDT (Quantity, Units, Di-
mensions and Types) ontology [22], DOLCE Ultra-Light ontol-
ogy (DUL) [4] and the Situation Theory ontology (STO-L) [23].
In the CRO, the concepts from DOLCE were loosely mapped to
classes and properties. The mapping itself was described in doc-
umentation and papers. In the the CRO2, on the other hand, the
Nuvio ontology is included through the use of the OWL con-
cept of import. Consequently, the semantics of this inclusion is
formally defined by the semantics of OWL.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

86



3.1. Modularity

In 1972 Pranas [24] introduced the concept of modularization
(in relation to software) as a mechanism for improving flexibil-
ity and comprehensibility of a system, the benefits of which were
three fold: (1) shortening of development time, (2) flexibility to
make changes to one module without changing the others and
(3) being able to understand one module at a time [24]. A sys-
tem thus consists of a number of components (modules) with
well defined interfaces between the modules. This is in opposi-
tion to monolithic system, in which the whole system is just one
module. The goodness of decomposition of a system into mod-
ules is assessed in terms of two metrics - cohesion (the strength
of the internal dependencies within a module) and coupling (a
measure of the degree of dependency between modules) [25]. A
good modular design is one with high cohesion of each of the
modules and low coupling among them.

The idea of modular design of software can then be mapped
to the modularization of ontologies. Since currently there are no
specificmetrics formodularity of ontologies, in this paperwe are
following these ideas by analogy to these ideas for software. Our
approach is based on three principles: (1) design ontologies in
modular fashion, i.e., consisting of a number of modules, rather
than being monolithic; (2) ensure that ontological modules have
strong cross-concept relationships inside each of the modules;
(3) align ontological modules with conceptual partitions of do-
mains. This kind of design allows us to include modules when-
ever a specific part of the domain needs to be modeled, and leave
them out otherwise.

Following the above principles, the analysis of the CRO has
revealed the existence of at least four parts that could be modu-
larized: the DOLCE-related high-level concepts, the core con-
cepts of the physical and link layer, the FM3TR representation
and the Transceiver API. Historically, the FM3TR part was in-
cluded in the CRO because it was an example of a more com-
plete model of waveform that was open source and not subject
to any restrictions. The transceiver API was another more spe-
cific representation which resulted from the involvement of the
Transceiver API Working Group of the Forum. These two parts
are at a lower abstraction level than the other parts and thus can
be used as examples of the use of CRO2 in practice.

In CRO2, all classes and properties specific to the Transceiver
API and FM3TR have been moved to separate, dedicated on-
tologies which import CRO2 and indirectly import the Nuvio
ontology as its foundational ontology. Following the modular-
ity principles, if any changes need to be done to any one of these
ontologies (Transceiver API or FM3TR), this should not affect
other ontologies (CRO2 or Nuvio); these changes or modifica-
tions can be made independently of one another. Figure 4 shows
a modular representation of the new ontological structure and
the import dependencies among the parts (on the right) that were
in the CRO (on the left).

Figure 4: Modularity of CRO2 Vs. CRO

3.2. Extensibility

In the context of ontology development, extensibility refers to
the features of an ontology that make it possible to extend this
ontology in the future. Unlike reusability, which means us-
ing the same code without modification (copy/paste), extensibil-
ity means adding new code that just connects with the existing
code. It must be doable with “minimum impact” [26]. In soft-
ware engineering, a system is considered extensible, if (1) any
changes can bemade to any of the existing system functionalities
and/or (2) addition of new functionalities can be done with, all
with “minimum impact”. This software development principle
is used during the design phase while addressing functional and
non-functional requirements. To address the aspect of extensi-
bility in software engineering, design patterns are used [27]. A
pattern describes a problem that occurs over and over again and
then describes the core of the solution to that problem. Using
patterns while designing systems makes it easier to understand
how to extend them later. Design patterns can be grouped into
three categories based on how they are used: (1) creational, (2)
structural and (3) behavioral [27]. Creational patterns deal with
the mechanism of instantiation of software, structural patterns
are concerned with how classes and objects are composed to
form larger structures, and behavioral patterns deal with algo-
rithms and the assignment of responsibility between objects.

While extensibility can involve many patterns, the most rele-
vant pattern from this point of view is the decorator pattern [27].
The main idea of this pattern are captured by the UML diagram
shown in Figure 5. The Component class in this figure repre-
sents represents the core functionality, which can then be ex-
tended (decorated) using the Decorator its subclasses. In the
figure only one ConcreteDecortor is shown, however, one can
stack many such subclasses, and use them as needed (even mak-
ing particular selections at run time). A solution without using
this pattern, on the other hand, would result in the repetition of
the same functionality multiple times. While this might work
fine, the problem is that the maintenance of such a system would
quite complicated and error-prone, since "the same functional-

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

87



ity" would have to modified in all of the subclasses.

Figure 5: Design pattern: Decorator

In our development of CRO2, software engineering design
patterns have been considered as the source of ideas for the struc-
turing of both the internals of the ontologies and their relations
to other ontologies. Since CRO2 is not being developed from
scratch, but instead is based on the CRO, one of the design op-
tions is the restructuring of the CRO into a number of interre-
lated ontologies, as was shown in Figure 4. Additionally, since
ontologies are not executable (procedural) code, the interpreta-
tion of extensibility is also different than the traditional meaning
of this term. In particular, the ontology design patterns (cf. [28]),
need to be taken into consideration.

One of the main differences between design patterns for on-
tologies vs. software is the semantics of patterns. While for pro-
cedural software components the behavior of the software needs
to be considered, for ontologies it is captured by the preservation
of the meaning of the particular concepts across the ontological
structures. In OWL the meaning of the concepts is determined
by the relations they are in with other concepts, both subClas-
sOf relations and the properties defined in the ontology. Adding
new classes that are not related to the original classes via the sub-
ClassOf relation with the concepts in the imported ontologymay
modify the meaning of the original classes. Similarly, adding
new properties that are not subProperyOf properties in the im-
ported ontology will add extra semantic knowledge that may
have impact on the meaning of the imported ontology. Conse-
quently, modifications to the meaning of the imported ontology
by the ontology that imports it, in the perfect world, should not
happen. To be fully compatible with this principle would require
that all the classes in the importing ontology are subclasses of

some of the classes in the imported ontology, and all the proper-
ties are the sub-properties. This requirement is rather difficult to
enforce, however, many of the decisions about the CRO2 classes
and properties have been striving to preserve these principles.

To analyze CRO2 from this point of view, we can review the
way CRO2 extends the Nuvio ontology. In fact, all of the classes
added by the CRO2 after importing Nuvio are subclasses of the
Nuvio classes. Also, no new axioms are added to the top level
classes in CRO2, i.e., the meaning of the Nuvio classes has not
been modified. The object and datatype properties imported
fromNuvio have preserved their semantics, too. However, many
new properties, both object and datatype, have been added as
top-level properties. This was the result of transferring the de-
tails of CRO into CRO2. Whether those properties should re-
main at the top is still a decision that is pending.

One of the decisions that had to be made with respect to both
the extensibility of the ontology and to the fidelity of the rep-
resentation of the domain knowledge was related to qualities,
quantities and the units of measures of quantities. In the CRO,
qualities were modeled as quantities, just without units of mea-
surement. There was no separate class to represent qualities,
but instead, they were represented as datatype properties, i.e.,
properties whose ranges are datatypes, e.g., int, boolean or float.
This is somewhat misleading since the use of datatypes is not in-
tended to treat the values of these qualities as such. For instance,
even though the range of the quality property macNodeID is int,
the intent here is to use int as a means of enumerating the IDs,
but not to imply any specific ordering of the IDs, or suggest that
the operations of addition and multiplication are applicable to
such qualities. Finally, the fact that quality datatypes don’t have
units blurs the distinction between qualities and dimensionless
quantities.

To account for dimensionless quantities, the class Dimension-
lessUnit was added as the subClassOf the UnitOfMeasure class.
This is useful for extending the ontology to include the quantities
and the units needed to model the radio domain. For instance,
the inclusion of the quantity of Gain was achieved by asserting
that its unit of measure is dB, which is a member of the class
DimensionlessUnit.

In CRO2, there is a special class Quality; this approach is thus
closer to the one used in DOLCE. Qualities don’t have any prop-
erties that would associate them with units of measure. Instead,
qualities can be defined as collections, e.g., enumeration classes.
Extending CRO2 by adding additional qualities is a relatively
simple operation; a subClassOf Quality needs to be added with
its contents defined. Any object (or process) then can be asso-
ciated with the new quality via the hasObjectQuality or hasPro-
cessQuality, respectively.

3.3. Precision in Concept Definitions and Support for In-
ference

The main shift from CRO to CRO2, in terms of axioms, had to
do with reusing properties by not defining their domain/range

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

88



Figure 6: Agent in CRO

Figure 7: Agent in CRO2

relationships and adding class restrictions. For example, in the
CRO, the class Agent is a subClassOf Object, where Agent is
defined as a class that is equivalent to Thing that has at least
one instance of Goal on the property hasGoal. Also, domain
and range classes for the hasGoal property are Object and Goal,
respectively. This is explained in Figure 6.

In CRO2, on the other hand, although Agent is still subClass
of a higher class (in this case Object), it is also defined as an
equivalent class to any Object that has at least one goal, i.e., is
associated with a goal by the hasGoal relation. The domains and
ranges of hasGoal are not defined, and thus if a modeler decides
to associate a goal with something else than Object, e.g., Pro-
cess, this is still allowable, however the inference engine would
not infer that that process is an agent. This is explained in Fig-
ure 7. Thus by this kind of refactoring, it is possible to both
support the inference, but also to avoid unnecessary derivations.
This part of refactoring, at the time of the writing of this paper,
is still in process. The plan is more operations of this type on
many other classes and properties.

Figure 8: Example of Quantity Length described in CRO Vs. CRO2

3.4. Compactness

Intuitively, compactness of an ontology is the measure of its size
with respect to the size of the domain knowledge that it covers.
Since there is no good measure of the latter, we consider this
measure only informally. We could, on the other hand, provide
a quantitative measure of the size of an ontology by counting the
number of classes, properties and axioms that it includes. Here
we provide some discussion on how the issue of compactness has
been addressed so far. So first of all, as mentioned earlier, two
chunks of representation (FM3TR and Transceiver API) have
been isolated as modules. This makes CRO2 much leaner in
terms of classes, sub classes, object properties and data proper-
ties. The separation of radio specific domain and moving the
general concepts to Nuvio has resulted in the removal of the
classes and various properties. Moreover, the CRO properties
have been refactored into a new property hierarchy. For exam-
ple the property aggregateOf in the CRO had 13 sub properties,
but in CRO2 these have been deleted and replaced with just two
properties.

Another example of refactoring is the representation of quan-
tities. In CRO2, the approach used in the QUDT ontology [22]
has been adopted. The main idea of this refactoring is shown
in Figure 8. This figure shows how two values, v1 and v2, are
represented in CRO (top) and in CRO2 (bottom). Clearly, the
CRO2 representation is more compact and it has the advantage
that the association between values and units of measure is very
clearly represented.

CRO has 50 top-level object properties, while CRO2 has 44.
In total, CRO has 156 properties, while CRO2 has 81. CRO has
41 datatype properties, while CRO2 has 18. Note that for CRO2
these numbers include both the classes/properties from CRO2
and Nuvio. The representation of terms of the cognitive radio
ontology has not changed due to this change, in fact we are able

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

89



to infer from CRO2 all the facts that were inferable from CRO,
and more.

4. SUMMARY OF CHANGES

The CRO consists of 228 classes, 190 properties [5] covering the
basic terms of wireless communications from the PHY layer,
MAC layer and network layer. CRO2 consists of 169 classes
and 98 properties covering all the terms that are covered by the
original CRO. The major aspects of the development of CRO2
included:

1. A new foundational ontology (Nuvio) has been developed
that is inspired by the original CRO, and other ontologies
like QUDT, STO-L and DOLCE.

2. The representation of terms of the Transceiver API and
FM3TR have been extracted to separate ontologies.

3. Quality features of ontologies have been analyzed and ap-
plied to CRO2. Some those features were inspired by simi-
lar considerations in the software engineering community.

4. The quality features have influenced the process of refac-
toring of the particular versions of the ontology.

5. CONCLUSION AND FUTUREWORK

This paper shows that the CRO2 ontology being developed at
Northeastern University and VIStology. This ontology will soon
be submitted to the Wireless Innovation Forum as an input doc-
ument. The expectation is that the Wireless Innovation Forum
will submit it to the IEEE 1900.5 Working Group for incorpora-
tion into the standard that this group is currently working on.

In this paper we discussed the various design issues that have
been considered in the process of developing this ontology, in-
cluding such features as modularity, extensibility, compactness,
precision of concept definitions, and support for automatic in-
ference.

Our future work will involve using the CRO2 which imports
the Nuvio foundational ontology to write rules to show the ad-
vantages of having a foundational ontology rather than just hav-
ing top level classes as in the original CRO. CRO2 is also being
used to represent the Model Based Spectrum Management ap-
proach and describe Spectrum Consumption Models (SCMs).
model and will have the SCM’s ontology developed.

The refactoring of this ontology is still work in progress.
We are seeking input from the community for all aspects of
this endeavor, including recommendations on the coverage of
the concepts from the domain of wireless communications, the
structure of the ontology and the definitions of the particu-
lar concepts. The ontology in OWL can be downloaded from
www.vistology.com/ont/CRO2. Comments and suggestions can
be emailed to mkokar@vistology.com.

REFERENCES

[1] B. A. Fette, Cognitive Radio Technology (2nd Edition).
Elsevier, 2009.

[2] M. M. Kokar, D. Brady, and K. Baclawski, “The Role of
Ontologies in Cognitive Radios,” in Cognitive Radio Tech-
nology Chapter 13, B. Fette, Ed. Academic Press, Else-
vier, 2009, pp. 401–428.

[3] MLM Working Group, “Use cases for MLM language
in modern wireless networks (SDRF-08-P-0009-V.1.0.0),”
The Software Defined Radio Forum, Tech. Rep., January
2009.

[4] C. Masolo, S. Borgo, and A. Gangemi, “DOLCE : a De-
scriptive Ontology for Linguistic and Cognitive Engineer-
ing,” Institute of Cognitive Science and Technology, Italian
National Research Council, Technical report, 2003.

[5] S. Li and M. M.Kokar, “Cognitive Radio Ontology,” in
Flexible Adaptation in Cognitive Radios, ser. Analog Cir-
cuits and Signal Processing. Springer New York, 2013,
pp. 67 – 78.

[6] J. Wang, D. Brady, K. Baclawski, M. Kokar, and L. Le-
chowicz, “The use of ontologies for the self-awareness of
the communication nodes,” in Proceedings of the Software
Defined Radio Technical Conference SDR’03, SW3-004,
2003.

[7] J. Wang, M. M. Kokar, K. Baclawski, and D. Brady,
“Achieving Self-Awareness of SDR Nodes Through
Ontology-Based Reasoning and Reflection,” in Proceed-
ings of the Software Defined Radio Technical Conference
SDR’04, 2004.

[8] W3C, “OWL 2 Web Ontology Lan-
guage Document Overview,” 2009,
http://www.w3.org/TR/owl2-overview/.

[9] ——, “SPARQL Query Language for RDF. W3C
Candidate Recommendation,” 2006, available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/.

[10] J. Mitola., “Cognitive Radio: An Integrated Agent Archi-
tecture for Software Defined Radio,” Ph.D. dissertation,
Royal Institute of Technology (KTH), 2000.

[11] “IEEE Standard for Policy Language Requirements and
System Architectures for Dynamic Spectrum Access Sys-
tems. IEEE Std 1900.5TM -2011,” IEEE Communications
Society, 2011.

[12] IEEE, “IEEE DySPAN 1900.5.2 standard,” 2015,
http://grouper.ieee.org/groups/dyspan/5/index.htm.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

90



[13] L. Grande, M. Sherman, H. Zhu,M.M.Kokar, and J. Stine,
“IEEE DySPAN 1900.5 Efforts To support Spectrum Ac-
cess Standardization,” in 2013 IEEEMilitary Communica-
tions Conference. IEEE, 2013, pp. 1750–1755.

[14] J. A. Stine and S. Schmitz, “Model-Based
Spectrum Management,” Version 2.0 MITRE
Corporation, April 2011. [Online]. Available:
https://www.mitre.org/sites/default/files/pdf/11 2071.pdf

[15] L. Lechowicz andM.M.Kokar, “Waveform reconstruction
from ontological description,” Analog Integrated Circuits
and Signal Processing, vol. 78 (3), pp. 753–769, 2014.

[16] S. Li, “Collaborative Adaptation of Cognitive Radio Pa-
rameters Using Ontology and Policy Based Approach,”
Ph.D. dissertation, Northeastern University Boston, 2011.

[17] L. Magee, “Upper-level ontologies,” Towards A Seman-
tic Web: Connecting Knowledge in Academic Research, p.
235, 2011.

[18] L. Schneider, “Designing Foundational Ontologies,” in
ConceptualModeling ER 2003, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2003, vol.
2813, pp. 91–104.

[19] I. Niles and A. Pease, “Towards a Standard Upper Ontol-
ogy,” in Proceedings of the International Conference on
Formal Ontology in Information Systems - Volume 2001,
ser. FOIS ’01. New York, NY, USA: ACM, 2001, pp.
2–9.

[20] G. Giancarlo, H. Heinrich, and W. Gerd, “Towards onto-
logical foundations for UML conceptual models,” in On
the Move to Meaningful Internet Systems 2002: CoopIS
DOA and ODBASE. Springer, 2002, pp. 1100 – 1117.

[21] G. Aldo, G. Nicola, M. Claudio, O. Alessandro, and
S. Luc, “Sweetening ontologies with DOLCE,” in Knowl-
edge engineering and knowledge management: Ontologies
and the semantic Web, 2002, pp. 166 –181.

[22] R. Hodgson and P. J.Keller, “QUDT-quantities units di-
mensions and data types in OWL and XML,” Online
(September 2011) http://www. qudt. org, 2011.

[23] M.M.Kokar, C. J.Matheus, andK. Baclawski, “Ontology-
based situation awareness,” Information Fusion, vol. 10,
pp. 83–98, 2009.

[24] D. L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Commun. ACM, vol. 15, no. 12,
pp. 1053 – 1058, Dec. 1972.

[25] L. L. Constantine and E. Yourdon, Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Youdon Press, 1978.

[26] B. Annappa, R. Rajendran, K. Chandrasekaran, and K. C.
Shet, “Analyzing Design Patterns for Extensibility,” in
Computer Networks and Intelligent Computing. Springer,
2011, pp. 269 – 278.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software.
Pearson Education, 1994.

[28] NeOn, “Ontology design patterns,” 2013,
http://ontologydesignpatterns.org.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

91


