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Abstract—Modulation Classification (MC) is a difficult task
that can increase awareness in Cognitive Radio (CR) applications.
Much of the research in MC has been for single antenna and
single user scenarios. For multiple users, multiple receivers
must be used to first separate the incoming signals before MC
can be done. For non-cooperative communications blind source
separation (BSS) techniques can readily separate a linear mixture
of signals, but it is not clear which technique is best suited
for MC. In this work, we compare three BSS algorithms as
candidates for multi-receiver MC while examining both single
and multiple user MC. In our simulations, the fastICA algorithm
achieves the best performance of the three [1]. At 0 dB SNR
for a single user, the fastICA algorithm acheives 96% correct
classification and 92% for multiple users with three receivers.
This work also reveals that the combination of phase correction,
fastICA, and support vector machines (SVMs) can achieve near-
optimal performance.

I. INTRODUCTION

Cognitive Radio (CR) is a technology that enables a ra-

dio to make intelligent decisions by exploiting knowledge

about the radio environment. The more a radio is aware of

its environment, the greater its ability to adapt to it using

increasingly complex behaviors. The lowest level of awareness

entails knowing whether or not a signal is present in a region

of interest and this has been the subject of much research

primarily for applications in dynamic spectrum access (DSA).

A higher level of awareness could entail knowing which

modulation is being transmitted. The task of determining the

modulation has been named modulation classification (MC),

recognition, or identification and has a variety of applications

in the military and commercial domains [2]. Sometimes this is

called automatic modulation classification in the sense that the

classification decision is made automatically by a computer

rather than a human being. In this paper we will focus on

MC applications involving non-cooperative communications.

In short non-cooperative communication is when the signal

of interest is coming from a transmitter that does not intend

for its data to be interpreted by the observing radio. This

is in general a more challenging scheme than cooperative

communications in which some properties of the incoming

signal may be known a-priori, such as coding scheme, that

can be exploited for better performance in MC [3].

Much of the research in MC has been focused on scenarios

with a single observed signal and a single receiving antenna

[4]. Some research has been done using multiple receiving
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Fig. 1. Multi-User Scenario with the Observer as a Hidden Node

antennas to increase classification performance, classify multi-

ple signals, and implement distributed classification techniques

[5]–[7]. The methods used in each application range from

likelihood-based methods to a combination of Independent

Component Analysis (ICA) and feature-based methods.

In this work MC algorithms are compared for both the single

and multiple user scenarios. The blind source separation (BSS)

techniques considered in this work include the (Joint Approx-

imate Diagonal Eigenmatrices) JADE, Gönen, and fastICA

algorithms [1], [8], [9]. Although each algorithm can perform

BSS, a comparison of their performance in the context of MC

does not exist to the best of our knowledge. Additionally,

each BSS algorithm has limitations with regards to which

signals it can separate. For example, in a single user scenario

many BSS techniques can be leveraged to combine copies

of the signal to increase the effectiveness of the classifier.

However, some BSS techniques struggle to do this and thus

their performances are compared to merely combining the

classifications of independent receivers. The results show that

even a combination of classifications can achieve reasonable

performance and in some cases, better performance than BSS

techniques. For multiple user scenarios, the system can be

treated as a generic MIMO system with noise. However, it

is important to note that in some scenarios, the observing

radio will be the hidden node between several independent

transmissions as in Figure 1. In this situation, transmitters
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may be a part of a larger system that prevents interference

between each node. However, the transmitters are not aware

of the observing radio and thus receives more than one signal

simultaneously. In this case frequency offsets, timing offsets,

and symbol rates can vary between overlapping transmissions.

A treatment of separating this class of signals is left as an

expansion on this work.

In Section II we outline our models and assumptions. Then,

each stage of the proposed MC algorithm is explained in

Section III. In Section IV, we compare results for different

algorithms in both single and multi-user scenarios. Lastly, we

conclude in Section V.

II. MODELS

The received noiseless digital baseband signal is commonly

represented by (1) from [4]:

xi(t) = αie
j2π∆iftejθi

K
∑

k=1

eφkskg(t− (k − 1)T − ǫT ) (1)

with ∆i, θi, ǫ, and αi, being the carrier frequency offset, the

time-invariant carrier phase, and timing offset with respect to

the receiver’s reference clock, and the signal amplitude of the

ith signal respectively. Phase jitter is represented by φk for the

kth equi-probable complex data symbol sk with symbol period

T for the modulation of order M . The channel response to the

transmitted pulse shape pTX is the convolution between h(t)
and pTX and is denoted by g(t). Each signal impinges upon a

uniform linear array (ULA) of isotropic elements. The signals

arriving at each of the elements at separate times creates a

change in phase of the received signal according to:

rp = e
j2πdp sin(Θi)

λ xi (2)

With rp representing the received signal on the pth element,

Θi being the angle of the incoming signal with respect to the

array normal, d being the distance separating each element,

and λ being the wavelength of the incoming narrowband

signal. There are a total of P receiving elements and N

incoming signals. For multiple incoming signals this can be

extended to:
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(3)

The matrix factor of x, named A, is sometimes called the

steering matrix. With the addition of additive white Gaussian

noise, this is expressed:

r = Ax+ n (4)

III. MODULATION CLASSIFICATION

Modulation classification can be separated into three stages

that each have its own challenges. First, the preprocessing

stage aims to accurately recover the transmitted signal and

apply appropriate transformations. This is done to maximize

the effectiveness of the second stage, the feature extraction

stage, in which a set of features are extracted from the

signal. Lastly the classification stage implements a decision

structure to best differentiate the incoming signals based on

the extracted features.

A. Preprocessing

For digital modulations, the preprocessing stage includes

common procedures for synchronization such as carrier and

timing recovery. It is often assumed that this procedure yields

the ideally sampled digital symbols [10] while synchronization

is left as a separate challenge. Additionally, the signal is

normalized to have unit energy after the signals are separated.

This simplifies the model in (1) to:

xi(t) = ejθi
K
∑

k=1

sk (5)

In many cases, synchronization cannot be done for low

signal to noise ratio (SNR) without a-priori information.

Therefore, we restrict our analyses to SNR above 0 dB.

1) Blind Source Separation: The JADE, Gönen, and fast

ICA algorithms are investigated as candidates for separating

the incoming signals. Both JADE and the Gönen algorithms

were originally intended for use as beamforming algorithms.

However, the JADE algorithm fails when sources have iden-

tical kurtoses, which is a statistic related to a fourth-order

moments. This is generally not a problem for this application

as signals on different antennas will have the addition of

independent noise. The fastICA algorithm was developed for

more general cases [1]. As such, general ICA approaches

suffer from being unable to separate more than two Gaussian

sources from each other. Each of these algorithms introduces

an ambiguity in the phase of the separated signals and their

respective orders.

2) Phase Correction: To maximize the effectiveness of

the feature extraction stage, the phase ambiguity introduced

through BSS is reduced by finding the phase that maximizes

the average magnitude of the quadrature. Stated mathemati-

cally, let ske
θ = sp with θ being determined from:

argmax
θ

1

K

K
∑

k=0

|imag(ske
jθ)| (6)

In this work, θ is found by a brute-force search algorithm

which adds a considerable amount of unnecessary computa-

tional complexity. Through experimentation, it was found that

checking 100 angles between 0 and π is sufficient. However, it

would be reasonable to implement a search algorithm that can

achieve a preferred level of stability in the phase correction.

This method of correcting the phase contribution is unique and

constitutes one of the key contributions of this work.
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B. Feature Extraction

Feature extraction methods in MC can be largely sep-

arated into two types: likelihood-based and feature-based.

Likelihood-based methods use likelihood ratios that can also

be considered as extracted features. Generally likelihood-

based methods can be considered optimal in the sense that

they achieve the least probability of misclassification [11].

However, this comes at the cost of a computational complex-

ity that eludes real-time implementation in many cases [4].

Likelihood-based methods come in three categories including

the average likelihood ratio test (ALRT), the generalized

likelihood ratio test (GLRT), and the hybrid likelihood ratio

test (HLRT). The ALRT estimates the unknown parameters

of a signal by treating them as random variables with known

probability density functions (PDF). This is the most accurate

of the likelihood-based approaches, but it is also the most

computationally complex. For this reason, the ALRT is often

used as a theoretical upper bound for the probability of correct

classification for other methods. The GLRT uses maximum-

likelihood estimates for the unknown quantities instead of

treating them as random variables with known PDF. This

is less computationally complex than the ALRT, but is less

accurate than the ALRT and suffers from being unable to

differentiate nested constellations such as 16-QAM and 64-

QAM entirely [4]. These two algorithms can be combined to

create the HLRT. Variants of the HLRT are the closest to real-

time implementation with the Discrete Likelihood-Ratio Test

(DLRT) being the only variant that has been implemented in

a practical scenario [7].

A feature-based method extracts a set of descriptive values

from the signal that differentiates each signal from each

other. These features can include cumulants, statistics, Fourier

Transform coefficients, Wavelet Transform coefficients, or a

combination of them [12]. This approach is suboptimal in

terms of probability of correct classification, but reduces the

computational complexity to real-time applications. Finding

the best set of features to accurately identify the modulation

has been the subject of many papers. The most commonly used

feature is fourth-order cumulants and other high-order cumu-

lants which can readily distinguish linear digital modulation

schemes from each other in low-SNR environments.

Two of the properties of fourth-order cumulants make them

a desirable candidate as features. First, the cumulant of the sum

of two independent distributions is the sum of the cumulants

of the two distributions. Second, the cumulants of order higher

than 3 for a Gaussian distribution is zero. Thus, the cumulants

of a constellation with additive white Gaussian noise is ideally

the cumulants of the constellation points without noise. The

fourth-order cumulants Ĉ40 and Ĉ42 are considered for MC

in this paper and are estimated using the following equations:
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Fig. 2. Distribution of Cumulants

Ĉ20 =
1

N

N
∑

n=1

y2(n) (7)

Ĉ21 =
1

N

N
∑

n=1

|y(n)|2 (8)

Ĉ40 =
1

N

N
∑

n=1

y4(n)− 3Ĉ2

20 (9)

Ĉ42 =
1

N

N
∑

n=1

|y(n)|4 − |Ĉ20|
2 − 2Ĉ2

21 (10)

In Figure 2 the estimates for |C40| and |C42| for BPSK,

QPSK, 8-PSK, and 16-QAM are plotted after a phase cor-

rection with 10 dB SNR. Notice that for each modulation

scheme there are extreme points that appear as statistical

outliers. These come from the tendency of the phase correction

occasionally over or under-correct.

C. Classification

Since the phase correction portion given in Section III-A2

occasionally skews the cumulant estimates seen in Figure 2,

the exact distribution of the cumulant estimates is unknown.

Thus, using a type of pattern recognition for the classification

stage is more appropriate than using a threshold. Support

vector machines (SVMs) can be used for this type of data.

Support vector machines were first introduced by Boser et

al [13] in 1992. It has had successful applications in many

fields that involve classification and fits into the broader study

of supervised learning models. SVM is a learning algorithm

that is widely used due to its ability to deal with high-

dimensional data and efficiency in modeling diverse data. As a

supervised learning algorithm an SVM is constructed offline

by using a set of training data. It uses the training data to

construct a hyperplane that optimally separates each class.
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Fig. 3. (Left) Example Data Set with Separator (Right) Transformed Data
Set with Optimal Hyperplane

This is sufficient only for linearly separable patterns, but can

be extended to other patterns by transformations of the data.

The training process works by first mapping data to a feature

space so that data points can be categorized. Then, a separator

between the categories is found and the data are transformed in

such a way that the separator could be drawn as a hyperplane.

This hyperplane can be used to predict the group to which

a new record should belong. As an example, consider the

following Figure 3 in which the data points fall into two

different categories. The two categories can be separated with

a curve. After a transformation using a predefined kernel

function, the boundary between the two categories can be

defined by a hyperplane. In this paper we use LIBSVM [14]

for our implementation using a linear kernel function.

IV. SIMULATIONS

A. Single-User Scenarios

For a single user scenario, the same sequence of symbols is

received by each antenna with additive white Gaussian noise

(AWGN). The number of receiving antennas P is fixed at three

and the number of symbols received T by the observing radio

is 300. The set of possible modulations for each source is

limited to BPSK, QPSK, 8-PSK, and 16-QAM. An example

distribution of the real portion of the fourth-order cumulants

for each of these modulations are depicted in Figure 2.

1) The Effect of Phase Correction: First, the effect of

the phase correction outlined in Section III-A2 is examined.

To examine this effect, the BSS methods are omitted in

the preprocessing stage and estimates for each cumulant are

generated from the signal received on each antenna. This

creates a six-dimensional feature vector that the SVM uses

to classify the incoming signal. The magnitude algorithm will

contain estimates of the cumulant magnitudes and the phase

corrected algorithm will contain the complex-valued estimates

for the cumulants. Note that either of these methods can be
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Fig. 5. Comparison of Single-User Methods

used to resolve the ambiguity of the phase of the received

signal.

The comparison of these two methods are seen in Figure

4. The magnitude algorithm performs slightly worse than the

phase corrected algorithm. This suggests that for MC using

the fourth-order cumulants, it is better to correct the phase of

the constellation than to take the magnitude of the cumulant.

Hence, it is used for the rest of the simulations in this paper.

2) ICA Algorithms for a Single User: Many ICA algorithms

have limitations for the sets of signals it can resolve. This

is highlighted especially in the single user case. Each of the

three algorithms are compared along with the phase corrected

algorithm in the previous section with the same simulation

parameters.

It is evident from the results in Figure 5 that combining

independent cumulant estimates performs better than using

either the JADE or Gönen algorithms to increase the effective

SNR. For example, at 0 SNR the phase corrected algorithm
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Fig. 6. Comparison of Multi-User Methods

achieves about 93 percent correct classification while the

Gönen algorithm achieves only 49 percent. This is likely

the case because BSS will not always succeed in increasing

the effective SNR when the SNR of the signal is too low

already. Thus, attempting to perform BSS may actually cause

the estimates of the fourth-order cumulants to be worse.

B. Multi-User

For a multi-user scenario, data is sent independently by

three transmitters. The data is simultaneously received by each

antenna with additive white Gaussian noise (AWGN). Three

receiving antennas receive at total of 300 symbols and then ap-

ply the MC algorithm. The set of possible modulations remains

the same as previous experiments. Three ICA algorithms are

tested: fastICA, JADE, and the Gönen algorithm.

It is clear that the fastICA algorithm outperforms the others

in terms of percent correct classification. It is interesting to

note that both the JADE and Gönen algorithms perform better

in the presence of multiple users than when a single user

is present. For example when the SNR is 0 dB, the Gönen

algorithm performs at 49% correct classification with a single

user and 81% correct classification with two additional users.

This suggests that both the JADE and Gönen algorithms could

be improved for the single user case by artificially adding other

signals in the event a single user is detected.

V. CONCLUSIONS

The use of BSS techniques in multi-receiver MC applica-

tions has not been thoroughly studied. Since BSS techniques

introduce a phase ambiguity in the received signals, an algo-

rithm for correcting the phase was introduced and increased

MC performance for low SNR. This work shows that the

choice of BSS technique requires consideration of both single

and multi-user scenarios. For single-user scenarios, the JADE

and Gönen algorithms are outperformed by the combination

of independent classification decisions. However, the fastICA

algorithm performs the best for both single and multi-user

scenarios. Used in tandem with an SVM implementation, the

fastICA algorithm achieves a percent correct classification

of greater than 90 percent for SNR greater than 0 dB. In

contrast to optimal likelihood-based algorithms in similar

situations, this performance is comparable for significantly less

computational complexity.

VI. ACKNOWLEDGEMENTS

This project was partially supported by the Broadband Wire-

less Access and Applications Center (BWAC); NSF Award No.

1265960.

REFERENCES

[1] A. Hyvärinen and E. Oja, “Independent Component Analysis: Algo-
rithms and Applications,” Neural Networks : the Official Journal of

the International Neural Network Society, vol. 13, no. 4-5, pp. 411–
30, 2000.

[2] W. Su, F. Monmouth, J. A. Kosinski, and M. Yu, “Dual-Use of Mod-
ulation Recognition Techniques for Digital Communication Signals,” in
Systems, Applications and Technology Conference, 2006, pp. 1–6.

[3] D. Jakubisin and R. Buehrer, “Improved Modulation Classification Using
a Factor-Graph-Based Iterative Receiver,” MILCOM, 2012.

[4] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “A Survey of Automatic
Modulation Classification Techniques : Classical Approaches and New
Trends,” Communications, IET, vol. 1, no. 2, pp. 137–156, 2007.

[5] A. Ramezani-kebrya, I.-m. Kim, D. I. Kim, and R. Inkol, “Likelihood-
Based Modulation Classification for Multiple-Antenna Receiver,”
vol. 61, no. 9, pp. 3816–3829, 2013.
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